
May 1998 The Delphi Magazine 41

Interposer Classes
Custom components made easy
by Stephen Posey

The designers of Delphi’s VCL
made some fairly clever and

sophisticated choices with regard
to its component hierarchy. One
evidence of this is that most of the
components in the Component Pal-
ette descend from ‘Custom’ ances-
tors (eg TButton descends from
TCustomButton), which are full
implementations of the compo-
nent but expose no properties.
This architecture allows a compo-
nent designer to customize the
behavior of the components they
create by publishing only those
properties that are appropriate for
their particular purposes.

Even so, there are some cases
where it’s not clear what the VCL
designers were thinking when they
chose which properties to make
public or published in some com-
ponents. One common complaint
is that the TPanel class, though
descended from TWinControl, does
not expose the Canvas property.

The usual solution is to create a
new component that reveals the
property, which can then be added
to the Component Palette. This is,
of course, a functional and long-
term solution, especially when
there may be other features to be
added to the component.

Sometimes, however, for one-
shot use of a property, creating a
whole new component is overkill.
It is also possible to trick Delphi
into allowing you to access that

property without having to create
and install a whole new compo-
nent. A common technique for
doing this is typecasting, which
often involves creating an empty
‘dummy’ class in the form unit:

implementation
type
TDummyPanel = class(TPanel)
end;

Which is then explicitly typecast
when needed:

TDummyPanel(Panel1).Canvas

This is also a useful technique for
an entirely different purpose. The
Delphi visibility directives operate
such that classes declared in the
same unit have access to one
another’s protected methods and
fields (supposedly equivalent to
‘friend’ classes in C++). This decla-
ration of TDummyPanel effectively
re-declares TPanel as local to the
current unit, thus other classes in
the unit have access to TDummy-
Panel’s (and thence TPanel’s)
protected members.

The technique I’m writing about
in this article, which I call creating
an ‘interposer class’, is closely
related to the above. Listing 1
shows the basic approach. What
this does is to redefine the meaning
of TPanel at compile and runtime,
by using a bit of identifier scoping
sleight-of-hand. While this tech-
nique provides the same access to

➤ Listing 1

protected members as the type-
casting technique, it also has some
other desirable characteristics.
Overall, I find this a much more
elegant approach.

As far as the IDE is concerned,
we’re still working with the regis-
tered TPanel component, and can
manipulate any TPanels (and their
standard properties) that we’ve
placed on the form in the normal
visual fashion.

At the same time, we also now
have access to the inherited (but
formerly hidden) Canvas property
that is exposed by declaring it in
the public section of the inter-
poser component. Access is
gained simply by referring to the
components by name (or other-
wise), just as we’ve always done.

This technique will also allow
adding entirely new methods, data
fields and even properties to the
interposer class, that are accessi-
ble at compile-time and runtime. A
trivial example is provided by the
HiThere method in Listing 1 (sev-
eral more elaborate examples of
‘interposed’ components are
included on the disk). In fact, it’s
entirely syntactically legal to add
items to the published section of an
interposer class. Such additions
are available only at compile-time
and runtime. However, they do not
show up at design-time (ie in the
Object Inspector). Such published
members are essentially treated as
if they were declared in the public
section.

This brings up what is maybe the
main weakness of the technique:
while it provides tremendous
power to redefine the meaning of a
component (in this case TPanel), it
nonetheless offers no means to
create new design-time properties.

unit ipunit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls;

type
TPanel = class(ExtCtrls.TPanel) // Interposer TPanel class
public
property Canvas ;
procedure HiThere ;

end ;
TPanelDemoForm = class(TForm)
Panel1: TPanel; // Interposed TPanel!
Image1: TImage;
Button1: TButton;
Button2: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private

public
end;

var PanelDemoForm: TPanelDemoForm;
implementation
{$R *.DFM}
procedure TPanel.HiThere ;
begin
ShowMessage('Hi there!') ;

end;
procedure TPanelDemoForm.Button1Click(Sender: TObject);
begin
Panel1.Canvas.Draw(0, 0, Image1.Picture.Icon) ;

end;
procedure TPanelDemoForm.Button2Click(Sender: TObject);
begin
Panel1.HiThere ;

end;
end.

42 The Delphi Magazine Issue 33

This limitation may not be of con-
sequence, however: in this case
the Canvas property wouldn’t be
published anyway.

If you really need changes to the
design-time interface, then you’ll
just have to convert the class into a
component and install it on the
Component Palette. By that same
token, this is also a great technique
for testing out the features and
behavior of new components to
make sure they’re working prop-
erly, before adding them to the
Component Palette.

It’s also possible to place inter-
poser classes into their own
unit(s), the only stipulation is that
the unit containing the interposer
class(es) must appear in the uses
clause after the unit with the origi-
nal component declarations (eg if
our interposer version of TPanel
appeared in a unit called EnhCtrls,
then EnhCtrls must appear in the
uses clause after ExtCtrls). Also,
the aforementioned feature allow-
ing access to protected members
will not work with this approach
(though they will be accessible in
the interposer unit). An example
project on the disk illustrates this.

This technique is actually not
limited to components from the
Component Palette, it can also be
used to subclass TForm! This opens
a whole world of possibilities for
creating highly customized, but
easily inheritable, form behavior
(even in Delphi 1!). Listing 2 shows
a simple example (a much more
elaborate one is on the disk).

Theoretically the same should
also be possible with TApplication.
The snag I ran across here is
related to the automatically cre-
ated Application object that all
Delphi projects get. This object is
created in a routine buried in the
initialization code for the Con-
trols unit and there appear to be
several simultaneous configura-
tions going on in order for the
proper startup and cleanup of TAp-
plication to occur. So far I haven’t
figured out a way to interpose this
process without serious VCL sur-
gery, which is precisely what this
technique is trying to avoid.

By the way, if you ever need to
access the original version of the

interposed component, you can
get to it by fully qualifying the
declaring unit (ExtCtrls.TPanel or
Forms.TForm in this case).

The first sample project on the
disk shows how to add various
kinds of often requested features
to various standard VCL controls
and how to use an interposer unit.
There are other useful techniques
too, over and above the class inter-
position. You’ll note that I placed
some of the new properties into
the published sections of the
classes, to show that they could
easily be converted into real visual
components with a bit more work.
One caveat about that though:
Delphi is very sensitive to installa-
tions of components with the same

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, ExtCtrls, StdCtrls, Buttons;

type
TForm = class(Forms.TForm) // Interposer TForm class
public
procedure About ;

end ;
type
TDemoForm = class(TForm) // Interposed Tform!
BitBtn1: TBitBtn;
procedure BitBtn1Click(Sender: TObject);

private
public
end;

var DemoForm: TDemoForm;
implementation
{$R *.DFM}
procedure TForm.About ;
begin
MessageBeep(MB_ICONEXCLAMATION) ;
MessageBox(Handle, 'TForm Interposer Class Demonstration',
'About...', MB_OK or MB_ICONEXCLAMATION or MB_TASKMODAL);

end;
procedure TDemoForm.BitBtn1Click(Sender: TObject);
begin
About;

end ;
end.

name (Delphi 1 would crash badly,
I’m not sure what Delphi 3 does),
so if you convert these to real
components, change their names!

The second sample project
shows how to interpose a form,
adding some fairly elaborate
custom form behavior. This proba-
bly should also be placed into an
interposer unit so that the custom
behavior could easily be applied to
more than one form, but I left that
as an exercise for the reader.

Stephen L Posey works in
Pittsburgh, USA; you can email
him at slposey@concentric.net

➤ Listing 2

